Cylinder (locomotive) -

Cylinder (locomotive)

The cylinder is the power-producing element of the steam engine powering a steam locomotive. The cylinder is made pressure-tight with end covers and a piston; a valve distributes the steam to the ends of the cylinder. Cylinders were cast in iron and later made of steel. The cylinder casting includes other features such as (in the case of the early Rocket locomotive) valve ports and mounting feet.[1] The last big American locomotives incorporated the cylinders as part of huge one-piece steel castings that were the main frame of the locomotive.[2] Renewable wearing surfaces were needed inside the cylinders and provided by cast-iron bushings.

The way the valve controlled the steam entering and leaving the cylinder was known as steam distribution and shown by the shape of the indicator diagram. What happened to the steam inside the cylinder was assessed separately from what happened in the boiler and how much friction the moving machinery had to cope with. This assessment was known as "engine performance" or "cylinder performance". The cylinder performance, together with the boiler and machinery performance, established the efficiency of the complete locomotive. The pressure of the steam in the cylinder was measured as the piston moved and the power moving the piston was calculated and known as cylinder power. The forces produced in the cylinder moved the train but were also damaging to the structure which held the cylinders in place. Bolted joints came loose, cylinder castings and frames cracked and reduced the availability of the locomotive.

Cylinders may be arranged in several different ways.


Early locomotives

On early locomotives, such as Puffing Billy, the cylinders were often set vertically and the motion was transmitted through beams, as in a beam engine.

Direct drive

The next stage, for example Stephenson's Rocket, was to drive the wheels directly from steeply inclined cylinders placed at the back of the locomotive. Direct drive became the standard arrangement, but the cylinders were moved to the front and placed either horizontal or nearly horizontal.

Inside or outside cylinders

The front-mounted cylinders could be placed either inside (between the frames) or outside. Examples:

In the 19th and early 20th centuries, inside cylinders were widely used in the UK, but outside cylinders were more common in Continental Europe and the United States. The reason for this difference is unclear.[citation needed] From about 1920, outside cylinders became more common in the UK but many inside-cylinder engines continued to be built.

Inside cylinders give a more stable ride with less yaw or "nosing" but access for maintenance is more difficult. Some designers used inside cylinders for aesthetic reasons.

Three or four cylinders

The demand for more power led to the development of engines with three cylinders (two outside and one inside) or four cylinders (two outside and two inside). Examples:

Crank angles

On a two-cylinder engine the cranks, whether inside or outside, are set at 90 degrees. As the cylinders are double-acting (i.e. fed with steam alternately at each end) this gives four impulses per revolution and ensures that there are no dead centres.

On a three-cylinder engine, two arrangements are possible:

Two arrangements are also possible on a four-cylinder engine:


The valve chests or steam chests which contain the slide valves or piston valves may be located in various positions.

Inside cylinders

If the cylinders are small, the valve chests may be located between the cylinders. For larger cylinders the valve chests are usually on top of the cylinders but, in early locomotives, they were sometimes underneath the cylinders.

Outside cylinders

The valve chests are usually on top of the cylinders but, in older locomotives, the valve chests were sometimes located alongside the cylinders and inserted through slots in the frames. This meant that, while the cylinders were outside, the valves were inside and could be driven by inside valve gear.

Valve gear

There are many variations in the location of the valve gear. In British practice, inside valve gear is usually of the Stephenson type while outside valve gear is usually of the Walschaerts type. However, this is not a rigid rule and most types of valve gear are capable of being used either inside or outside. Joy valve gear was once popular, e.g. on the LNWR G Class.

Inside cylinders

On inside-cylinder engines the valve gear is nearly always inside (between the frames), e.g. LMS Fowler Class 3F.

Outside cylinders

On engines with outside cylinders there are three possible variations:

Three cylinders

There are three common variations:

Four cylinders

There are three common variations:

Other variations

There are many other variations, e.g. geared steam locomotives which may have only one cylinder. The only conventional steam locomotive with one cylinder that is known is the Nielson One-Cylinder Locomotive.[3]

See also


  1. ^ "The Engineering and History of Rocket, a survey report", Michael R Bailey and John P Glithero, National Railway Museum 2000, ISBN 1 900747 18 9, Drawing 4.37
  2. ^ 1941 Locomotive Cyclopedia of American Practice, Eleventh Edition, Simmons-Boardman Publishing Corporation, p.667
  3. ^ Self, Douglas (27 May 2003). "The Nielson One-Cylinder Locomotive" . Retrieved 2 December 2010.

Categories: Locomotive parts | Steam locomotive technologies

Information as of: 16.07.2020 06:18:52 CEST

Source: Wikipedia (Authors [History])    License : CC-by-sa-3.0

Changes: All pictures and most design elements which are related to those, were removed. Some Icons were replaced by FontAwesome-Icons. Some templates were removed (like “article needs expansion) or assigned (like “hatnotes”). CSS classes were either removed or harmonized.
Wikipedia specific links which do not lead to an article or category (like “Redlinks”, “links to the edit page”, “links to portals”) were removed. Every external link has an additional FontAwesome-Icon. Beside some small changes of design, media-container, maps, navigation-boxes, spoken versions and Geo-microformats were removed.

Please note: Because the given content is automatically taken from Wikipedia at the given point of time, a manual verification was and is not possible. Therefore does not guarantee the accuracy and actuality of the acquired content. If there is an Information which is wrong at the moment or has an inaccurate display please feel free to contact us: email.
See also: Legal Notice & Privacy policy.