Empirical formula
In chemistry, the empirical formula of a chemical compound is the simplest positive integer ratio of atoms present in a compound.[1] A simple example of this concept is that the empirical formula of sulfur monoxide, or SO, would simply be SO, as is the empirical formula of disulfur dioxide, S2O2. Thus, sulfur monoxide and disulfur dioxide, both compounds of sulphur and oxygen, have the same empirical formula. However, their molecular formulas, which express the number of atoms in each molecule of a chemical compound, are not the same.
An empirical formula makes no mention of the arrangement or number of atoms. It is standard for many ionic compounds, like calcium chloride (CaCl2), and for macromolecules, such as silicon dioxide (SiO2).
The molecular formula, on the other hand, shows the number of each type of atom in a molecule. The structural formula shows the arrangement of the molecule. It is also possible for different types of compounds to have equal empirical formulas.
Samples are analyzed in specific elemental analysis tests to determine what percent of a particular element the sample is composed of.
Examples
- Glucose (C6H12O6), ribose (C5H10O5), Acetic acid (C2H4O2), and formaldehyde (CH2O) all have different molecular formulas but the same empirical formula: CH2O. This is the actual molecular formula for formaldehyde, but acetic acid has double the number of atoms, ribose has five times the number of atoms, and glucose has six times the number of atoms.
- The chemical compound n-hexane has the structural formula CH3CH2CH2CH2CH2CH3, which shows that it has 6 carbon atoms arranged in a chain, and 14 hydrogen atoms. Hexane's molecular formula is C6H14, and its empirical formula is C3H7showing a C:H ratio of 3:7.
Calculation example
A chemical analysis of a sample of methyl acetate provides the following elemental data: 48.64% carbon (C), 8.16% hydrogen (H), and 43.20% oxygen (O). For the purposes of determining empirical formulas assume that we have 100 grams of the compound. If this is the case, the percentages will be equal to the mass of each element in grams.
- Step 1: Change each percentage to an expression of the mass of each element in grams. That is, 48.64% C becomes 48.64 g C, 8.16% H becomes 8.16 g H, and 43.20% O becomes 43.20 g O.
- Step 2: Convert the amount of each element in grams to its amount in moles
- \({\displaystyle \left({\frac {48.64{\mbox{ g C}}}{1}}\right)\left({\frac {1{\mbox{ mol }}}{12.01{\mbox{ g C}}}}\right)=4.049\ {\text{mol}}}\)
- \({\displaystyle \left({\frac {8.16{\mbox{ g H}}}{1}}\right)\left({\frac {1{\mbox{ mol }}}{1.007{\mbox{ g H}}}}\right)=8.095\ {\text{mol}}}\)
- \({\displaystyle \left({\frac {43.20{\mbox{ g O}}}{1}}\right)\left({\frac {1{\mbox{ mol }}}{16.00{\mbox{ g O}}}}\right)=2.7\ {\text{mol}}}\)
- Step 3: Divide each of the resulting values by the smallest of these values (2.7)
- \({\displaystyle {\frac {4.049{\mbox{ mol }}}{2.7{\mbox{ mol }}}}=1.5}\)
- \({\displaystyle {\frac {8.095{\mbox{ mol }}}{2.7{\mbox{ mol }}}}=3}\)
- \({\displaystyle {\frac {2.7{\mbox{ mol }}}{2.7{\mbox{ mol }}}}=1}\)
- Step 4: If necessary, multiply these numbers by integers in order to get whole numbers; if an operation is done to one of the numbers, it must be done to all of them.
- \({\displaystyle 1.5\times 2=3}\)
- \({\displaystyle 3\times 2=6}\)
- \({\displaystyle 1\times 2=2}\)
Thus, the empirical formula of methyl acetate is C3H6O2. This formula also happens to be methyl acetate's molecular formula.
References
Categories: Chemical formulas | Analytical chemistry
Information as of: 02.06.2021 12:58:20 CEST
Source: Wikipedia (Authors [History]) License : CC-BY-SA-3.0
Changes: All pictures and most design elements which are related to those, were removed. Some Icons were replaced by FontAwesome-Icons. Some templates were removed (like “article needs expansion) or assigned (like “hatnotes”). CSS classes were either removed or harmonized.
Wikipedia specific links which do not lead to an article or category (like “Redlinks”, “links to the edit page”, “links to portals”) were removed. Every external link has an additional FontAwesome-Icon. Beside some small changes of design, media-container, maps, navigation-boxes, spoken versions and Geo-microformats were removed.
Please note: Because the given content is automatically taken from Wikipedia at the given point of time, a manual verification was and is not possible. Therefore LinkFang.org does not guarantee the accuracy and actuality of the acquired content. If there is an Information which is wrong at the moment or has an inaccurate display please feel free to contact us: email.
See also: Legal Notice & Privacy policy.