Longitude of the ascending node

The longitude of the ascending node (☊ or Ω) is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a specified reference direction, called the origin of longitude, to the direction of the ascending node, as measured in a specified reference plane.[1] The ascending node is the point where the orbit of the object passes through the plane of reference, as seen in the adjacent image. Commonly used reference planes and origins of longitude include:

In the case of a binary star known only from visual observations, it is not possible to tell which node is ascending and which is descending. In this case the orbital parameter which is recorded is simply labeled longitude of the node, Ω, and represents the longitude of whichever node has a longitude between 0 and 180 degrees.[5], chap. 17;[4], p. 72.

Calculation from state vectors

In astrodynamics, the longitude of the ascending node can be calculated from the specific relative angular momentum vector h as follows:

\({\displaystyle {\begin{aligned}\mathbf {n} &=\mathbf {k} \times \mathbf {h} =(-h_{y},h_{x},0)\\\Omega &={\begin{cases}\arccos {{n_{x}} \over {\mathbf {\left|n\right|} }},&n_{y}\geq 0;\\2\pi -\arccos {{n_{x}} \over {\mathbf {\left|n\right|} }},&n_{y}<0.\end{cases}}\end{aligned}}}\)

Here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis. k is the unit vector (0, 0, 1), which is the normal vector to the xy reference plane.

For non-inclined orbits (with inclination equal to zero), Ω is undefined. For computation it is then, by convention, set equal to zero; that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis.

See also


  1. ^ Parameters Describing Elliptical Orbits , web page, accessed May 17, 2007.
  2. ^ a b Orbital Elements and Astronomical Terms Archived 2007-04-03 at the Wayback Machine, Robert A. Egler, Dept. of Physics, North Carolina State University. Web page, accessed May 17, 2007.
  3. ^ Keplerian Elements Tutorial , amsat.org, accessed May 17, 2007.
  4. ^ a b The Binary Stars, R. G. Aitken, New York: Semi-Centennial Publications of the University of California, 1918.
  5. ^ a b Celestial Mechanics , Jeremy B. Tatum, on line, accessed May 17, 2007.

Categories: Orbits

Information as of: 21.06.2020 11:05:59 CEST

Source: Wikipedia (Authors [History])    License : CC-by-sa-3.0

Changes: All pictures and most design elements which are related to those, were removed. Some Icons were replaced by FontAwesome-Icons. Some templates were removed (like “article needs expansion) or assigned (like “hatnotes”). CSS classes were either removed or harmonized.
Wikipedia specific links which do not lead to an article or category (like “Redlinks”, “links to the edit page”, “links to portals”) were removed. Every external link has an additional FontAwesome-Icon. Beside some small changes of design, media-container, maps, navigation-boxes, spoken versions and Geo-microformats were removed.

Please note: Because the given content is automatically taken from Wikipedia at the given point of time, a manual verification was and is not possible. Therefore LinkFang.org does not guarantee the accuracy and actuality of the acquired content. If there is an Information which is wrong at the moment or has an inaccurate display please feel free to contact us: email.
See also: Legal Notice & Privacy policy.