Respiratory acidosis


Respiratory acidosis
Davenport diagram
SpecialtyEndocrinology 

Respiratory acidosis is a state in which decreased ventilation (hypoventilation) increases the concentration of carbon dioxide in the blood and decreases the blood's pH (a condition generally called acidosis).

Carbon dioxide is produced continuously as the body's cells respire, and this CO2 will accumulate rapidly if the lungs do not adequately expel it through alveolar ventilation. Alveolar hypoventilation thus leads to an increased PaCO2 (a condition called hypercapnia). The increase in PaCO2 in turn decreases the HCO3/PaCO2 ratio and decreases pH.

Contents

Types


Respiratory acidosis can be acute or chronic.

Causes


Acute

Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction related to asthma or chronic obstructive pulmonary disease (COPD) exacerbation.

Chronic

Chronic respiratory acidosis may be secondary to many disorders, including COPD. Hypoventilation in COPD involves multiple mechanisms, including decreased responsiveness to hypoxia and hypercapnia, increased ventilation-perfusion mismatch leading to increased dead space ventilation, and decreased diaphragm function secondary to fatigue and hyperinflation.

Chronic respiratory acidosis also may be secondary to obesity hypoventilation syndrome (i.e., Pickwickian syndrome), neuromuscular disorders such as amyotrophic lateral sclerosis, and severe restrictive ventilatory defects as observed in interstitial lung disease and thoracic deformities.

Lung diseases that primarily cause abnormality in alveolar gas exchange usually do not cause hypoventilation but tend to cause stimulation of ventilation and hypocapnia secondary to hypoxia. Hypercapnia only occurs if severe disease or respiratory muscle fatigue occurs.

Physiological response


Mechanism

Metabolism rapidly generates a large quantity of volatile acid (H2CO3) and nonvolatile acid. The metabolism of fats and carbohydrates leads to the formation of a large amount of CO2. The CO2 combines with H2O to form carbonic acid (H2CO3). The lungs normally excrete the volatile fraction through ventilation, and acid accumulation does not occur. A significant alteration in ventilation that affects elimination of CO2 can cause a respiratory acid-base disorder. The PaCO2 is maintained within a range of 35–45 mm Hg in normal states.

Alveolar ventilation is under the control of the respiratory center, which is located in the pons and the medulla. Ventilation is influenced and regulated by chemoreceptors for PaCO2, PaO2, and pH located in the brainstem, and in the aortic and carotid bodies as well as by neural impulses from lung stretch receptors and impulses from the cerebral cortex. Failure of ventilation quickly increases the PaCO2.

In acute respiratory acidosis, compensation occurs in 2 steps.

Estimated changes

In renal compensation, plasma bicarbonate rises 3.5 mEq/L for each increase of 10 mm Hg in PaCO2. The expected change in serum bicarbonate concentration in respiratory acidosis can be estimated as follows:

The expected change in pH with respiratory acidosis can be estimated with the following equations:

Respiratory acidosis does not have a great effect on electrolyte levels. Some small effects occur on calcium and potassium levels. Acidosis decreases binding of calcium to albumin and tends to increase serum ionized calcium levels. In addition, acidemia causes an extracellular shift of potassium, but respiratory acidosis rarely causes clinically significant hyperkalemia.

Diagnosis


Diagnoses can be done by doing an ABG (Arterial Blood Gas) laboratory study, with a pH <7.35 and a PaCO2 >45 mmHg in an acute setting. Patients with COPD and other Chronic respiratory diseases will sometimes display higher numbers of PaCO2 with HCO3- >30 and normal pH.

Terminology


See also


References


  1. ^ Boron, Walter F. (2005). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 858. ISBN 1-4160-2328-3.
  2. ^ Yee AH, Rabinstein AA (February 2010). "Neurologic presentations of acid-base imbalance, electrolyte abnormalities, and endocrine emergencies". Neurol Clin. 28 (1): 1–16. doi:10.1016/j.ncl.2009.09.002 . PMID 19932372 .

External links


Classification
External resources







Categories: Acid–base disturbances




Information as of: 28.06.2021 11:19:32 CEST

Source: Wikipedia (Authors [History])    License : CC-BY-SA-3.0

Changes: All pictures and most design elements which are related to those, were removed. Some Icons were replaced by FontAwesome-Icons. Some templates were removed (like “article needs expansion) or assigned (like “hatnotes”). CSS classes were either removed or harmonized.
Wikipedia specific links which do not lead to an article or category (like “Redlinks”, “links to the edit page”, “links to portals”) were removed. Every external link has an additional FontAwesome-Icon. Beside some small changes of design, media-container, maps, navigation-boxes, spoken versions and Geo-microformats were removed.

Please note: Because the given content is automatically taken from Wikipedia at the given point of time, a manual verification was and is not possible. Therefore LinkFang.org does not guarantee the accuracy and actuality of the acquired content. If there is an Information which is wrong at the moment or has an inaccurate display please feel free to contact us: email.
See also: Legal Notice & Privacy policy.